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We extend our mean-field theory of backbone liquid-crystalline polymers (LCPs) to calculate chain 
anisotropy in nematic phase. The LCP theory applies to semiflexible, worm-like polymers and we use the 
Kratky-Porod formalism with a self-consistent mean-field approximation. We calculate the end-to-end 
distance of a polymer chain in the nematic phase as a function of concentration and temperature. For 
sufficiently long or sufficiently flexible polymers, we find for the ratio of z to x components of the end-to-end 
distance: (1 +2S)/(1-S), where S is the order parameter and z the director axis. At the transition this 
has a universal value of 2. The order parameter is described by the equation: (1 - S) 2 (1 + 2S)2/(2 + S) = 27/8euc. 

(Keywords: semiflexible polymers; liquid-crystalline polymers; nematics; chain conformations) 

Introduction 
Liquid-crystalline polymers (LCPs), as a consequence 

of partial ordering of long chains, manifest intriguing 
phenomena x'/. In the interest of processability it is 
desirable to introduce some flexibility along the polymer 
backbone and in this paper we consider semiflexible, 
worm-like polymers. Such polymers have a gradual 
curvature along their contour and we expect that they 
are mathematical models for polymers with partially 
hindered backbone rotations. 

With the goal of describing the complex LCP 
dynamics, a simple self-consistent formulation of polymer 
statics is required. We have recently proposed a 
mean-field description of the nematic state in semiflexible 
LCPs 3. Both lyoptropic and thermotropic systems are 
addressed and the simplicity of the final thermodynamic 
description offers promise of amenability to more difficult 
problems. 

In this paper we apply our mean-field theory of nematic 
polymers to calculate the chain conformations. It is 
expected that as a result of ordering, the polymer chains 
are extended along the director axis (z axis) and explore 
proportionally less space in the other two directions. This 
anisotropy was recently probed in a polyester nematic 
phase by neutrons 4. We discuss these experiments in 
relation to our work. 

Review of mean-field theory of LCP 
Here we enunciate the salient features of our mean-field 

theory which predicts successfully the backbone liquid- 
crystalline (LC) behaviour of semiflexible long chain 
polymers 3. Two concepts are fundamental to any LC 
description: an inherent or induced rigidity in the 
polymer chain and an anisotropic polymer-polymer  
interaction. We consider the Hamiltonian ~ff of partition 
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function Lr: 

= .F~[R(s)] exp(-- Jf/kaT ) 

:;~[R(s)]{exp[-e/2fdsl~2(s,]l-=J6[l~2(s~,-l]} 

×{expE-,uo/e)ffd* ds, 
x 6[R(s~)-R(s,)]]} (1) 

We have dropped the isotropic excluded volume term 
since at the level of presentation in this paper it has no 
bearing on the LC behaviour. However, if fluctuations 
were to be discussed, the term (w/2)SSds~ds ~ 6(R~-Rp) 
would be included in the Hamiltonian. The first term in 
equation (1), for the non-interacting chain contour R(s), 
describes the chain backbone as a path that has a 
continuous tangent /~(s) and a curvature /~(s). The 
simplification introduced is to allow the tangent 
magnitude to fluctuate locally but to remain unity on an 
average. This is consistent with the other approximation 
in our model, of a mean-field nematic interaction, and 
affords a simple analytic solution. We rewrite the unit 
magnitude constraint as: 

I] a[R~(s~)- 13 
~t 

where Y l  is the normalization and 2(s) is a field. The 
second term in equation (1) is the polymer-polymer  
nematic interaction, which is also approximated as a 
polymer-field interaction - details may be found in the 
original paper a. If ~TiJ(r) = S dsl~i(s)l~J(s) 6 [ r -  R(s)] is the 
ijth component of the orientation tensor and ¢(r) the 
corresponding conjugate field, we write the field- 
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dependent Hamiltonian: 

RBI, / 
f ~ [ R ( s , ] e x p  - £ ~  

=Arf~[R(s)]{exp[-rds(~-]~2+i2"2+i"~O")]J ,2 

xexp(ifds2)exp(ifd3rq ~o) 

The self-consistent approximation is to take 2(s), aft) and 
Off) at their means. We interrogate the phase behaviour 
by minimizing the free energy with respect to the fields 
(after performing the Gaussian integral over all polymer 
paths), obtaining the system state, polymer concentration 
and temperature dependent mean value of the fields. 
Quoting the results obtained in our previous paper3: 

c 1 1 
(4a) 

G - 4  x f ~  x / ~  + X 

1 1 E 1 
1 - ( 4 b )  

~ , =  Un ~ aa-- u,,% (4c) 
# 

where c is the polymer concentration. The subscripts c~ 
and fl represent the eigenvalues of the tensors and the 
notation t~, 7. shows that the imaginary number i has 
been absorbed in the new definitions. 

These equations display the correct form of phase 
change in LCPs. In two dimensions we get a second-order 
phase transition and in three dimensions the phase 
transition is first order, uniaxial. The equation for the 
order parameter S is: 

(1 + 2S)2(1 - S )  2 27 
(5) 

(2 + S) 8eu,c 
The formulation describes both concentration-driven 
liquid crystals (lyotropic) and temperature-sensitive 
alignment (thermotropic). The simplest temperature 
dependence is the Boltzmann term in the bending energy 
e, and we use the pseudo-potential to the first virial 
coefficient Ts=U/u; u,=u(l+T,/T) for the nematic 
interaction. U represents the soft aligning interactions of 
the van der Waals' type, as in most aromatic backbones, 
and u arises from steric constraints. The condition for 
phase change is: 

Gu 1 6 (6) 
T¢ To/-  

The order parameter has the universal value 0.25 at the 
transition and its growth thereafter is given by equation 
(5). When the soft aligning forces dominate, T~>>T~, 
Tc~(cUe) ~/2~. If the polymers have insignificant 
quadrupolar inducement to liquid crystallinity, Ts<< T~, 
T~ ~ (cue). In lyotropic liquid crystals the biphasic regime 
is spanned between the concentrations, 0.9813G ~<c ~< 
1.0267G; G is the critical polymer concentration at the 
transition, from equation (6). The order parameter in the 
nematic phase during the coexistence regime is 0.306. We 
find that the order parameter S in semiflexible polymers 

is much smaller than for rod-like LCPs. This is to be 
expected given the flexibility of the backbone, which 
encourages local alignment but then the polymer can 
wander off. 

End-to-end distance of a cha& 
Any average property of a chain, fiR), for a given 

Hamiltonian ~ is: 

<fiR)> = ~ ~[R]f(R) exp( -  f l~ )  (7) 
~ [R]  exp( -  floor) 

The end-to-end distance of a semiflexible chain, 
f(R)=<R~o>=<[R(L)-R(O)]:>, subject to a nematic 
interaction, can be calculated by using the field- 
dependent Hamiltonian given in equation (3). We 
calculate the cah projection of the end-to-end distance, 
<R~o>~, by working in the discrete Fourier space and 
then considering the limit of a sufficiently long polymer 
such that we can use the continuous modes: 

<R2o), 

( a ~ \ j  

x exp - -  dsR 2 -- i(2 + t),) d s / ~  2 

L d O  

? .7) 1 + i# ds 
• ,tO J / l # = O J  

= - - -  exp dq 

x [exp(iqL)-l][exp(-iqL)-l])) 
(e/2)q 4 + i(2 + ~,)q2 , = 0 

_ 1 ~'L 1 

2i()o+t),) [ x/-2iE(2+~, )/e ] 

x [1 - exp( -  L ~ +  ~])/e)] t (8) 

If the persistence length in the c~ direction is defined 
as b~=3/2i(2+t),), then using the fields as evaluated in 
equations (4a)-(c): 

,9a, 

by = b~ (9b) 

b==12~( ; +2S- ) z (9c) 

We rewrite equation (8): 

2 b, [ p <RL°>~----3 LL 6 

The average magnitude of the tangents is unity. 

Discussion 
For an isotropic liquid the order parameter is zero and 

the end-to-end distance is the same in each direction. At 
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Figure 1 Ratio of persistence lengths as a function of reduced 
temperature. From the top curve down: Ts/Tc= ~,  10, 1 and 0 

the transition the material becomes preferentially 
oriented in the z direction, and then the z component of 
the end-to-end distance grows over the other two as in 
equation (10). The choice of the director axis is arbitrary 
in the absence of external effects such as fields or surface 
boundaries. If we consider the limit of very long chains, 
or small persistence lengths, we find that the anisotropy 
in the square end-to-end distance is proportional to the 
ratio of the persistence lengths: (RZ)z / (R2)x , , ,b=/bx= 
(1 + 2S)2/ (1-S)  2. The polymers for which our theory is 
manifestly applicable are in this limit. We show how the 
anisotropy grows as a function of reduced temperature, 
T/Tc, for different values of TJT¢ in Figure 1. 

In the limit of complete alignment, the x and y 
components of the end-to-end distance vanish and the 
chain extends like a rigid rod in the z direction. Then 
considering the implicit temperature dependence of e 
(e,,~ l /T) ,  we obtain ( R L o ) z = L .  

Experimental innovations in neutron scattering have 
made possible the measurement of chain anisotropy in 
LCPs. A recent study of polyester nematics motivated 
this paper 4. The authors found that R=/R x increased from 
!.5 to 2.1 from 196 to 175°C. Definitive comments cannot 
be made with this limited information on the applicability 
of our theory. The molecular weights of the polyesters 
were low, the degree of polymerization was about 10 and 
therefore not suitable for our theory which applies to 
long polymers. Further, it is not clear that it is valid for 
us to treat these polyesters as worm-like. The polyester 
backbone consists of alternating rigid and flexible units. 
If the flexible units are long, such that the polymer forgets 
the persistence of the previous rigid unit, it is more 
realistic to model these chains as a collection of freely 
hinged rods. An additional complication in these systems 
is the transesterification reaction. 

Our theory is similar to a number of other theories of 
backbone semiflexible LCPs, and our results are in 
qualitative agreement with these theories ~-7. Since the 
model we propose has a simple analytic description, it 
might be useful for future work on complex problems like 
polymer dynamics. The experimental results are sparse 
and at present it is not possible to favour one theory over 
the other based on experimental validation. At this stage, 
an experimental programme on well characterized, 
model, semiflexible, backbone LCPs would be particuarly 
useful. 
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